Multifunctional Erosion Resistant Icephobic Appliques for Rotorblades, Phase II

Completed Technology Project (2009 - 2011)

Project Introduction

The overall objective of this NASA SBIR program is to develop technology enablers for NASA's rotorcraft vision to facilitate rotorcraft operation in all weather environments. Specifically, NanoSonic will build on its successful completion of Phase I objectives and first generation test article demonstration to optimize, scale up, and qualify high performance, multifunctional, nanostructured, icephobic appliqués with enhanced erosion resistance for rotorblade leading edges. Reliable all-weather service has specifically been identified as one of the barriers to achieving NASA's rotorcraft vision. To truly revolutionize air transportation mobility, rotorcraft must be able to operate in similar environments to current fixed wing vehicles -- including environmental conditions in which icing may occur. NanoSonic's multifunctional appliqués will help to enable NASA's rotorcraft vision by completely preventing ice buildup on rotorblades. Implementation of NanoSonic's erosion resistant hydrophobic appliqués will facilitate mission critical operations in icing conditions and mitigate concerns of vibration transmission and shudder that are associated with ice buildup. NanoSonic's appliqués integrate erosion resistant nanocomposites, enhancing rotorcraft operation in high erosion environments. Maintenance and associated costs are reduced, as a new appliqué can be readily placed on the rotorblade leading edge when the existing appliqué has exhausted its functionality.

Primary U.S. Work Locations and Key Partners

Multifunctional Erosion Resistant Icephobic Appliques for Rotorblades, Phase II

Table of Contents

Project Introduction		
Primary U.S. Work Locations		
and Key Partners		
Organizational Responsibility		
Project Transitions		
Project Management		
Technology Areas		

Organizational Responsibility

Responsible Mission Directorate:

Space Technology Mission Directorate (STMD)

Lead Center / Facility:

Langley Research Center (LaRC)

Responsible Program:

Small Business Innovation Research/Small Business Tech Transfer

Small Business Innovation Research/Small Business Tech Transfer

Multifunctional Erosion Resistant Icephobic Appliques for Rotorblades, Phase II

Completed Technology Project (2009 - 2011)

Organizations Performing Work	Role	Туре	Location
Langley Research Center(LaRC)	Lead Organization	NASA Center	Hampton, Virginia
Nanosonic, Inc.	Supporting Organization	Industry	Pembroke, Virginia

Primary U.S. Work Locations

Virginia

Project Transitions

February 2009: Project Start

August 2011: Closed out

Project Management

Program Director:

Jason L Kessler

Program Manager:

Carlos Torrez

Technology Areas

Primary:

